New Approaches to Myelodysplastic Syndrome Treatment

Curr Treat Options Oncol. 2022 May;23(5):668-687. doi: 10.1007/s11864-022-00965-1. Epub 2022 Mar 23.

Abstract

The treatment of myelodysplastic syndromes (MDS) begins with risk stratification using a validated tool such as the International Prognostic Scoring System (IPSS) or its revised version (IPSS-R). This divides patients into lower- and higher- risk categories. Although treatment objectives in lower-risk MDS (LR-MDS) have traditionally been directed at improving cytopenias (usually anemia) as well as quality of life, recent data supports a potential role for early intervention in delaying transfusion dependency. In addition, careful individualized risk stratification incorporating clinical, cytogenetic, and mutational data might help identify patients at higher-than-expected risk for progression. Given the need for supportive care with red blood cell (RBC) transfusions leading to iron overload, iron chelation should be considered for patients with heavy transfusion requirements at risk for end-organ complications. For patients with LR-MDS and isolated anemia, no high-risk features, and endogenous erythropoietin (EPO) levels below 500 U/L, erythropoiesis-stimulating agents (ESAs) can be attempted to improve anemia. Some LR-MDS patient subgroups may also benefit from specific therapies including luspatercept (MDS with ring sideroblasts), lenalidomide (MDS with deletion 5q), or immunosuppressive therapy (hypocellular MDS). LR-MDS patients failing the above options, or those with multiple cytopenias and/or higher-risk features, can be considered for oral low-dose hypomethylating agent (HMA) therapy. Alternatively, these patients may be enrolled on a clinical trial with promising agents targeting the transforming-growth factor beta (TGF-β) pathway, the hypoxia-inducible factor (HIF) pathway, telomerase activity, inflammatory signaling, or the splicing machinery. In higher-risk MDS (HR-MDS), therapy seeks to modify the natural history of the disease and prolong survival. Eligible patients should be considered for curative allogeneic hematopoietic stem cell transplantation (aHSCT). Despite promising novel combinations, the HMAs azacitidine (AZA) or decitabine (DAC) are still the standard of care for these patients, with intensive chemotherapy-based approaches being a potential option in a small subset of patients. Individuals who fail to respond or progress after HMA experience dismal outcomes and represent a major unmet clinical need. Such patients should be treated as part of a clinical trial if possible. Experimental agents to consider include venetoclax, myeloid cell leukemia 1 (MCL-1) inhibitors, eprenetapopt, CPX-351, immunotherapies (directed towards CD47, TIM3, or CD70), interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors, pevonedistat, seclidemstat, and eltanexor. In this review, we extensively discuss the current landscape of experimental therapies for both LR- and HR-MDS.

Keywords: Experimental therapies; Hypomethylating agents; Magrolimab; Myelodysplastic syndromes; Targeted therapies; Venetoclax.

Publication types

  • Review

MeSH terms

  • Anemia* / complications
  • Anemia* / drug therapy
  • Antineoplastic Agents* / therapeutic use
  • Azacitidine / therapeutic use
  • Humans
  • Lenalidomide / therapeutic use
  • Myelodysplastic Syndromes* / diagnosis
  • Myelodysplastic Syndromes* / etiology
  • Myelodysplastic Syndromes* / therapy
  • Quality of Life

Substances

  • Antineoplastic Agents
  • Lenalidomide
  • Azacitidine